Study of (p,n) Reaction in a Wide Energy Range

Main Article Content

N. A. El-Nohy
M. N. El-Hammamy
S. Diab
A. M. El-Shinawy


In this paper, the quasi-elastic scattering (p, n) reactions are studied for a wide range of target nuclei 13C, 14C, 48Ca, 90Zr and 208Pb and different incident energies (35-160 MeV). The phenomenological Optical model potential and density independent approaches are used for these calculations in comparison with density dependent semi-microscopic approach. The density dependent parameters are modified to achieve the best calculations for many targets at different energy levels.

Quasi-elastic scattering, single folding, lane potential.

Article Details

How to Cite
El-Nohy, N. A., El-Hammamy, M. N., Diab, S., & El-Shinawy, A. M. (2019). Study of (p,n) Reaction in a Wide Energy Range. Asian Journal of Research and Reviews in Physics, 2(4), 1-18. Retrieved from
Original Research Article


Lane AM. Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions. Nucl. Phys. 1962;35:676.

Carlson JD, Zafiratos CD. Optical model analysis of quasielastic (p, n) reactions at 22.8 MeV. Nucl. Phys. A. 1975;249:29.

Satchler GR, Mcvoy KW. Exploratory studies of the elastic scattering of 11Li + 12C. Nucl. Phys. A. 1991;522:621.

Arellano HF, von Geramb HV. Extension of the full-folding optical model for nucleon-nucleus scattering with applications up to 1.5 GeV. Phys. Rev. C. 2002;66:24602.

Ogloblin AA, Aglukhov Yu. New measurement of the refractive, elastic 16O + 12C scattering at 132, 170, 200, 230 and 260 MeV incident energies. Phys. Rev. C. 2000;62:44601.

Dao T. Khoa, Satchler GR. Generalized folding model for elastic and inelastic nucleus–nucleus scattering using realistic density dependent nucleon–nucleon interaction. Nucl. Phys. A. 2000;668:3.

El-Nohy NA, Motaweh HA, Attia A, El-Hammamy MN. The relation between the isoscalar and isovector interaction potentials. 20th International Seminar on Interaction of Neutrons with Nuclei: Alushta, Ukraine, 21–26 May; 2012.

Kunz PD. Instructions for the use of DWUCK4: A distorted wave born approximation program, COO-535-606, Abstract number NESC9872, 36; 1987.

Cook J. DFPOT - a program for the calculation of double folded potentials. Comput. Phys. Comm. 1982;25:125.

Doering RR, Patterson DM, Galonsky A. Microscopic description of isobaric-analog-state transitions induced by 25-, 35-, and 45-MeV protons. Phys. Rev. C. 1975;12: 378.

Bainum DE, Rapaport J, Goodman CD, et al. Observation of giant particle-hole resonances in 90Zr(p, n)90Nb. Phys. Rev. Lett. 1980;44:1751.

Sugarbaker E, et al. Proceedings of the International Conference on Nuclear Structure, Amsterdam, edited by A. Van Der Wonde and B. J. Verhaar. 1982;77. Jacob Rapaport (Private Communication).

Orihara H, Murakami T. The neutron time-of-flight facility at Tohoku University cyclotron. Nucl. Instrum. Methods. 1981;181:15.

Orihara H, et al. Status of the cyric neutron TOF facilities upgrade. Nucl. Instrum. Methods Phys. Res. 1987;A257:189.

Jacob Rapaport, Unpublished (Private Communication); H. F. Arellano, W. G. Love. An in-medium full-folding model approach to quasi-elastic (p,n) charge–exchange reactions. arXiv: 0706.2523 v1 [nucl-th]; 2007.

Anderson BD, Mostajabodda’vati M, Lebo C, et al. Isobaric-analog-state transitions in the (p,n) reaction at 135 MeV and density-dependent impulse-approximation calculations. Phys. Rev. C. 1991;43:1630.

Becheetti FD, Greenlees GW. Nucleon-nucleus optical-model parameters, A>40, E<50 MeV. Phys. Rev. 1969;182:1190.

Varner RL, Thompson WJ, McAbee TL, Ludwig EJ, Clegg TB. A global nucleon optical model potential. Phys. Rep. 1991;201:57.

Koning AJ, Delaroche JP. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A. 2003;713:231.

Satchler GR, Love WG. Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 1979;55: 183.

Bohlen HG, Clover MR, Ingold G, et al. Observation of the nuclear rainbow scattering for 12C+12C at E Lab =300 MeV. Z. Phys. A. 1982;308:121.

Bohlen HG, Chen XS, Cramer JG, et al. Refractive scattering and the nuclear rainbow in the interaction of 12, 13C with 12C at 20 MeV/N. Z. Phys. A. 1985;322:241.

Stiliaris E, Bohlen HG, Frobrich P, et al. Nuclear rainbow structures in the elastic scattering of 16O on 16O at EL =350 MeV. Phys. Lett. B. 1989;223:291.

Basu DN, Roy Chowdhury P, Samanta C. Equation of state for isospin asymmetric nuclear matter using lane potential. Acta Phys. Pol. B. 2006;37(10):2869.

Myers WD. Geometric properties of leptodermous distributions with applications to nuclei. Nucl. Phys. A. 1973;204:465.

Bandyopadhyay D, Samanta C, Samaddar SK, De JN. Thermostatic properties of finite and infinite nuclear systems. Nucl. Phys. A. 1990;511:1.

Roy Chowdhury P, Samanta C, Basu DN. Modified Bethe-Weizsacker mass formula with isotonic shift and new drip lines. Mod. Phys. Letts. A. 2005;21:1605.

Audi G, Wapstra AH, Thibault C. The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A. 2003;729:337.

Satpathy L, Uma Maheswari VS, Nayak RC. Finite nuclei to nuclear matter: A leptodermous approach. Phys. Rep. 1999;319:85.

Schutz Y, et al. The role of nuclear incompressibility in the production of hard photons in heavy-ion collisions. Nucl. Phys. A. 1996;599:97c.

Friedman B, Pandharipande VR. Hot and cold, nuclear and neutron matter. Nucl. Phys. A. 1981;361:502.

Ozawa A, et al. Nuclear size and related topics. Nucl. Phys. A. 2001;691: 599.

De Veries H, De Jager CW. Nuclear charge and magnetization density distribution parameters from elastic electron scattering. Nucl. Data Tables. 1987;36:495.

El-Azab Farid M, Hassanain MA. Density -independent folding analysis of the Li-6, Li-7 elastic scattering at intermediate energies. Nucl. Phys. A. 2000;678:39.

Umemoto Y, Hirenzaki S, Kume K, Toki H. Isotope dependence of deeply bound pionic states in Sn and Pb. Phys. Rev. C. 2000;62:024606.

Osman A. Density dependent nucleon-nucleus optical potential in the (p,n) reactions. Acta Phys. Pol. B. 2009;40: 2345.

Khoa DT, Than HS, Cuong DC. Folding model study of the isobaric analog excitation: Isovector density dependence, Lane potential, and nuclear symmetry energy. arXiv: 0706.1282 v1 [nucl-th]; 2007.