Analytic Solutions of the Rotating and Stratified Hydrodynamical Equations

Main Article Content

Imre F. Barna
L. Mátyás


In this article we investigate the two-dimensional incompressible rotating and stratified, just rotating,  just stratified Euler equations, comparing with each other and with the normal Euler equations with  the self-similar Ansatz. The motivation of our study is the following the presented rotating stratified  fluid equations can be interpreted as a well-established starting point of various more complex and  more realistic meteorologic, oceanographic or geographic models. We present analytic solutions  for all four models for density, pressure and velocity fields, most of them are some kind of power-law  type of functions. In general the presented solutions have a rich mathematical structure. Some  solutions show nonphysical explosive properties others, however are physically acceptable and  have finite numerical values with power law decays. For a better transparency we present some figs  for the most complicated velocity and pressure fields. To our knowledge there are no such analytic  results available in the literature till today. Our results may attract attention in various scientific fields.   

Mathematical formulation, conservation laws and constitutive relations, stratified flows.

Article Details

How to Cite
Barna, I. F., & Mátyás, L. (2021). Analytic Solutions of the Rotating and Stratified Hydrodynamical Equations. Asian Journal of Research and Reviews in Physics, 4(1), 14-26.
Original Research Article


Vallis GK. Atmospheric and oceanic fluid dynamics. Cambridge University Press; 2005.

Dolzhansky FV. Fundamentals of geophysical hydrodynamics. Springer. 2013;227:Eq. 25.14-15.

Zeitlin V. Geophysical fluid dynamics. Oxford University Press; 2018.

Sedov L. Similarity and dimensional methods in mechanics. CRC Press; 1993.

Baraneblatt GI. Similarity, self-similarity, and intermediate asymptotics. New York Consultants Bureau; 1979.

Barna IF, Mátyas L. Fluid. Dyn. Res. 2014;46:055508.

Barna IF, M´átyas L. Chaos solitons and fractals. 2015;78:249.

Campos D. Handbook on Navier-stokes equations. Theory and Applied Analysis. Nova Chapter 16, ”Self-similar analysis of various Navier-stokes equations in two or three dimensions. Publishers, New York. 2017;275-304.

Barna IF, Bogn´ár G, Guedda M, M´átyas L, Hriczo K. Mathematical modelling and analysis. 2020;25:241.

Barna IF, M´átyas L. Miskolc mathem. Notes. 2013;14:785.

Koba H. Nonlinear stability of ekman boundary layers in rotating stratified fluids. American Mathematical Society; 2014.

Davidson PA. Turbulence in rotating, stratified and electrically conducting fluids. Cambridge University Press; 2014.

Sokolovskiy MA, Verron J. Dynamics of vortex structures in a stratified rotating fluid. Series: Atmospheric and Oceanographic Sciences Library 47, Publisher: Springer International Publishing; 2014.

Ansorge C. Analyses of turbulence in the neutrally and stably stratified planetary boundary layer. Springer Thesis; 2017.

Armenio V, Sarkar S. Environmental stratified flows; 2005.

Bo. Pedersen F. Environmental hydraulics: Stratified flows. Springer; 1986.

Yih CS. Stratified flows. Academic Press; 1980.

Grimshaw R. Environmental stratified flows. Kluwer Academic Publishers; 2003.

Hopfiger EJ. Journ. Geophysical Research. 1987;92:5287.

Voropayev SI, Afanasyev YD. Vortex structure in a stratified fluid: Order from chaos. Springer; 1994.

Vilcox CH. Sound propagation in stratified fluids. Springer; 1984.

Kennett B. Seismic wave propagation in stratified media. ANU E Press; 1983.

Ono H. Journ. Phys. Soc. Japan. 1975;39:1082.

Peringotti D, Rossa A, Ferrario M, Sansone M, Benassi A, Meteorol Z. 2007;16:505.

Sz´ep R, M´atyas L. Carpath J. Earth. Env. Sci. 2014;9:241.

Sz´ep R, M´atyas L, Keresztes R, Ghimpusan M. Rev. Chim. 2016;67:205.

Barna IF, Pocsai MA, L¨ok¨os S, M´átyás L. Chaos solitons and fractals. 2017;103:336.

Dabirian R, Mohan R, Shoham O, Kouba G. Journal of Natural Gas Science and Engineering. 2016;33:527.

Greenspan HP. The theory of rotating fluids. Cambridge University Press; 1968.

Egbers C, Pfister G. Physics of rotating fluids. Springer; 2000.

Eisenga M. Dynamics of a Vortex ring in a rotating fluid. Techniche Universiteit Eindhoven; 1997.

Hopfinger EJ. Rotation fluids in geophysical and industrial applications. Springer; 1992.

Vanyo JP. Rotating fluids in engineering and science. Butterworth-Heinemann; 1993.

Chemin JY, Desjardins B, Gallagher I, Grenier E. Mathematical geophysics. Clarendon Press; 2006.

Zhang K, Liao X. Theory and modeling of rotating fluids. Cambridge Monographs on Mechanics; 2017.

Boubnov BM, Golitsyn GS. Convection in rotating fluids. Kluwer Academic Publisher; 1995.

Vad´asz P. Fluid flow and heat transfer in rotating porous media. Springer; 2016.

Skiba YN. Mathematical problems of the dynamics of incompressible fluid on a rotating sphere. Springer; 2017.

Barna IF, Pocsai MA, Barnaf¨ oldi GG. Submitted to the physics of the dark universe. arXiv:2007.04733

Barna IF. Commun. Theor. Phys. 2011;56:745.

Barna IF, Bogn´ár G, Hriczo K. Mathematical modelling and analysis. 2016;21:83.