First-principles Investigation of Structure and Electronic Properties of NiTe2 Fermi Crossing Type-II Dirac Semimetal

Main Article Content

Muzambilu Saminu
Sofwan Ibrahim Saleh
Shafiu Ibrahim Musa
Gulzar Ahmed
M. C. Idris

Abstract

The electronic structure aspect of transition metal dichalcogenides (TMDs) has so far received intensive research interest. NiTe2 is a noble candidate for type-II DSM with Dirac point near the Fermi surface. In this paper we present a systematic investigation of the structural stabilities and electronic properties of NiTe2 using density functional theory via a plane wave pseudopotential method in the context of the Perdew–Burke–Ernzerh of generalized gradient approximation. The structural parameters, partial and total density of states (DOS) were systematically studied. Our structural study indicates that the material has a trigonal structure with P3̅m1 space group. In addition, we have computed the cohesive energy and the DOS at the Fermi level [N(Ef)]. The results show that NiTe2 is stable.

Keywords:
DFT, structural properties, dirac semimetal, NiTe2, dichalcogenides.

Article Details

How to Cite
Saminu, M., Saleh, S. I., Musa, S. I., Ahmed, G., & Idris, M. C. (2021). First-principles Investigation of Structure and Electronic Properties of NiTe2 Fermi Crossing Type-II Dirac Semimetal. Asian Journal of Research and Reviews in Physics, 4(1), 27-33. https://doi.org/10.9734/ajr2p/2021/v4i130135
Section
Original Research Article

References

Anand TJS, Zaidan M, Azam MA, et al. Structural studies of NiTe2 thin films with the influence of amino additives. Int J Mech Mater Eng. 2014;9:18.

Nguyen VT, Gay M, Enderby JE, Newport RJ, Howie RA. The structure and electrical properties of liquid semiconductors; 1982.

Qianwen W, Peng W, Gengyu C, Min H. First principle study of the structural and electronic properties of MoS2-MoTe2 monolayer heterostructures. J. Phys. D: Appl. Phys. 2013;46:505308 7

Burkov AA. Topological semi-metals. Nat. Mater. 2016;15:1145-1148.

Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, et al. Type-II weyl se-metals nature. 2015;527:495-498.

Saumya M, Sophie F, Pabitra K, Timur K, Laurent C, Mathew D, et al. Fermi-crossing type-II dirac fermions and topological surface states in NiTe2. Scientific Reports. 2020;10:12957.

Chungian X, Bin L, Wen J, Wei Z, Bin Q, Raman S, et al. Topological type-II dirac fermions approaching the fermi level in a transition metal dichalcogenide NiTe2. Chem. Mater. 2018;14:4823-4830.

Huang H, Zhou S, Duan W. Phys. Rev. B 94, 121117®; 2016.

Zheng FP, Li XB, Tan P, Lin YP, Xiong LX, Chen X. Emergent superconductivity in two dimensional NiTe2 crystals. Phys. Rev. B. 2020;101:100505(R).

Tao L, Ke W, Chungiang X, Qian H, Hao W, Jun-Yi G et al. Pressure-induced superconductivity in topological type-II dirac semimetal NiTe2. Cond-Mat. Supr-Con; 2019.

Ghosh B, Mondal D, Kuo CN, Lue CS, Nayak J, Fujii J et al. Phys. Rev. B 100. 2019;195134.

Xu C, Li B, Jiao W, Zhou W, Qian B, Sankar R. Chem. Mater. 2018;30:4823.

Foresman J, Frisch A. Exploring chemistry with electronic structure methods 2nded. Gaussian, Inc, Pittsburgh, PA; 1996.

Novak P, Boucher F, Gressier P, Blaha P, Schwarz K. Phys. Rev. B 63. 2001; 235114-1–8.

Filippov A. Non-linear non-local schrodinger equation in the contest of quantum mechanics. Phys. Lett A. 1996;215:32-9.

Callaway J, March N. Density functional methods: Theory and application solid-state physics. 1984;38:135-221.

Kuznetsov A, Medvedev I. Does born-oppenheimer approximation break down in charge transfer process? An exactly solvable model. Chem. Phys. 2006;324:148-59.

Chaikin P, Lubensky T. Principles of condensed matter physics. Cambridge univ. Press; 2000.

Hohenberg P, Kohn W. Density functional theory. Phys. Rev. B. 194;136:864-76.

Dreizler R, Gross E. Density functional theory: An approach to the quantum many-body problem. Springer Science & Business Media; 2012.

Payne M, Teter M, Allan D, Arias T, Joannopoulos J. Iterative minimization techniques for ab initio total energy calculations molecular dynamics and conjugate gradients. Rev. Modern Phys. 1992;64:1045.

Giannozzi P, Baroni S, Bonini N, Calandra R, Cavazzoni C, Caresoli D, et al. Phys. Condens. Matter 21. 2009;395502.

Monkhorst HJ, Pack JD. special points for brillouin zone integrations. Phys. Rev. B 13, 12. 1976;5188.

Perdew JP, Burke K, Ernzerhof M. Phys. Rev. Lett. 1996;77:3865-3868.

Hartwigsen S, Goedecker J. Hutter. Relativistic separable dual-space gaussian pseudopotentials from H to Rn, Phys. Rev. B 58.1998;3641.

Birch F. Finite elastic strain of cubic crystal. Phys. Rev. 71. 1947;809-824.

Wu S, Fecher GH, Shabab S, Felser C. Elastic properties and stability of heusler compounds: cubic Co 2 YZ compounds with L 2 1 structure. J Appl Phys 2019;125.

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:1133.

Jain A, Ong SP, Hautier G, Chen W, Richards WD, Deck S. The materials project: A material genome approach to accelerating materials innovation APL materials. 2013;1(1):011002.