Optical Properties of Monazite Nanoparticles Prepared Via Ball Milling

Chiamaka Peace Onu *

Department of Physics and Industrial Physics, Nnamdi Azikiwe University, P.M.B.5025, Awka, Nigeria.

Azubike Josiah Ekpunobi

Department of Physics and Industrial Physics, Nnamdi Azikiwe University, P.M.B.5025, Awka, Nigeria.

Chiedozie Emmanuel Okafor

Department of Physics and Industrial Physics, Nnamdi Azikiwe University, P.M.B.5025, Awka, Nigeria.

Lynda Adaora Ozobialu

Department of Physics and Industrial Physics, Nnamdi Azikiwe University, P.M.B.5025, Awka, Nigeria.

*Author to whom correspondence should be addressed.


This research work focused on the preparation of Monazite nanoparticles using ball milling technique and the determination of its optical properties. High energy ball milling was used to prepare nanoparticles from the bulk materials using the top-down technique. Debye–Scherer formula was used to determine the crystalline size of the nanoparticle. Optical properties such as transmittance, refractive index, extinction coefficient, optical conductivity and band gap energy were determined. The result showed that the crystalline size was about 64.23nm on the average. The dislocation density calculated ranged from 0.149 x 10-3nm to 0.460 x 10-3nm. The absorbance decreased as the wavelength spectrum moved from the ultraviolet region to the visible region and the near-infrared region. The refractive index increased from 1.57 a.u to 2.65 a.u as the photon energy increased from about 1.38eV to 1.14eV. The transmittance at the near-infrared region was even up to 90.9% in some cases. The band energy gap was between 3.57eV and 4.11eV. The properties of the Monazite nanoparticles determined showed that it can have possible applications in optoelectronic and photovoltaic devices.

Keywords: Monazite, nanoparticle, optical properties, crystalline size, bend energy gap, refractive index

How to Cite

Onu , C. P., Ekpunobi , A. J., Okafor , C. E., & Ozobialu , L. A. (2023). Optical Properties of Monazite Nanoparticles Prepared Via Ball Milling. Asian Journal of Research and Reviews in Physics, 7(4), 17–29. https://doi.org/10.9734/ajr2p/2023/v7i4146


Download data is not yet available.


Prerna K, Anubhav D, Ratan G. Nanoparticles: An overview drugs and cell therapies in haematology (ISSN: 2281-4876). 2021;10(1):1487–1497.

Mhadhbi M. Modelling of the high-energy ball milling process. Advances in materials physics and chemistry. 2021;11:31-44. Available:https://doi.org/10.4236/ampc.2021.111004

Adam Ż, Svitlana S, Wiktor K, Dariusz B, Katarzyna M. Zinc sulphide (ZnS) nanparticles for advanced application Technical transactions chemistry. 2016; 125–134. DOI: 10.4467/2353737xct.16.053.5315

Satoshi H, Nick S. Introduction to nanoparticles. Microwaves in nanoparticle synthesis, First Edition. 2013;1–24.

Faramawy A, Elsayed H, Scian C, Mattei G. Structural, optical, magnetic and electrical properties of sputtered zno and zno:Fe Thin Films: The Role of Deposition Power. Ceramics, 2022;5:1128–1153. Available:https://doi.org/10.3390/ceramics5040080.

Madkhali N. Analysis of structural, optical, and magnetic properties of (Fe,Co) co-doped zno nanoparticles synthesized under UV light. Condens. Matter. 2022;7: 63. Available:https://doi.org/10.3390/condmat7040063.

Theerthagiri J, Salla S, Senthil RA, Nithyadharseni P, Madankumar A, Arunachalam P, Maiyalagan T, Kim HS. A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology. 2019;30. DOI:10.1088/1361-6528/ab268a 392001.

Hamid SBA, Teh SJ, Lai CW. Photocatalytic water oxidation on ZnO: A review. Catalysts. 2017;7(93):1–14.


Kumar R, Kumar G, Al-Dossary O, Umar A. ZnO nanostructured thin films: Depositions, properties and applications—A review. Mater. Express. 2015;5:3–23. DOI:10.1166/mex.2015.1204

Hwang DK, Oh MS, Lim JH, Park SJ. ZnO thin films and light-emitting diodes. J. Phys. D Appl. Phys. 2007;40:R387–R412. DOI 10.1088/0022-3727/40/22/R01

Tereshchenko A, Bechelany M, Viter R, Khranovskyy V, Smyntyna V, Starodub N, Yakimova, R. Optical biosensors based on ZnO nanostructures: Advantages and perspectives. A review. Sens. Actuators B Chem. 2016;229:664–677.


Fen X, Zhang P, Navrotsky A, Yuan Z, Ren T, Halasa M, Su B. Hierarchically assembled porous ZnO nanoparticles: synthesis, surface energy, and photocatalytic activity. Chem Mater. 2007; 19:5680.

Martinson AB, Elam JW, Hupp JT, Pellin MJ. ZnO nanotube based dye-sensitized solar cells. Nano Lett. 2007;7:2183.

Wang R, Xin J, Tao X. UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics. Inorg Chem. 2005;44:3926.

Yang M, Wang D, Peng L, Xie T, Zhao Y. Photoelectric response mechanisms dependent on RuN3 and CuPc sensitized ZnO nanoparticles to oxygen gas. Nanotechnology. 2006;17:4567.

Rong P, Ren S, Yu Q. Fabrications and applications of ZnO nanomaterials in flexible functional devices-A review. Crit. Rev. Anal. Chem. 2018;49:336–349. Available:https://doi.org/10.1080/10408347.2018.1531691.

Liu X, Pan L, Zhao Q, Lv T, Zhu G, Chen T, Lu T, Sun Z, Sun C. UV assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem. Eng. Journal. 2011;183: 238–243. DOI:10.1016/j.cej.2011.12.068.

Carmen CP, Susana FB, Wim MD. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 2019;1:937. DOI: 10.1039/c8na00238j.

Tan X, Jaka S, Wenrong Y, Yongbai Y, Alexey M, Glushenkov Lu HL, Patrick C, Howlettb, Ying C. Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale. 2013;5:7970.

DOI: 10.1039/c3nr02328a.

Rijesh M, Aswin D, Kapil D, Surendranathan AO, Sreekanth MS. Effect of milling time on production of aluminium nanoparticle by high energy ball milling. International Journal of Mechanical Engineering and Technology. 2018;9(8): 646–652.

Joy J, Krishnamoorthy A, Tanna A, Kamathe V, Nagar R, Srinivasan S. Recent developments on the synthesis of nanocomposite materials via ball milling approach for energy storage applications. Appl. Sci; 2022.


Li F, Wan Y, Chen J, Hu X, Tsang DC, Wang H, Gao B. Novel ball-milled biochar-vermiculite nanocomposites effectively adsorb aqueous As(V). Chemosphere. 2020;260:127566.

Zhang N, Mao Y, Wu S, Xu W. Effects of the ball milling process on the particle size of graphene oxide and its application in enhancing the thermal conductivity of wood. Forests 2022;13:1325. Available:https://doi.org/10.3390/f13081325.

Alami AH, Aokal K, Olabi AG, Alasad S, Aljaghoub H. Applications of graphene for energy harvesting applications: Focus on mechanical synthesis routes for graphene production. Energy Sources Part A Recovery Util. Environ. Eff. 2021;43:1–30.

Schulz B. Monazite microstructures and their interpretation in petrochronology. Front. Earth Sci. 2021;9:668566.

DOI: 10.3389/feart.2021.668566.

Anitha JK, Sabu J, Rejith RG, Sundararajan M. Monazite chemistry and its distribution along the coast of Neendakara–Kayamkulam belt, Kerala, India. © Springer Nature Switzerland AG, Applied Sciences. 2020;2:812.

Available:https://doi.org/10.1007/s42452-020-2594-6 2020

Wei Chen, Huang H, Tian B, Shaoyong J. Geochemistry of monazite within carbonatite related ree deposits. Resources. 2017;6:51. DOI:10.3390/resources6040051.

Frank S, Spear J, Pyle M. Theoretical modeling of monazite growth in a low-Ca metapelite. Chemical Geology. 2010;273: 111–119. DOI:10.1016/j.chemgeo.2010.02.016.

Yakuphanoglu F, Barim G, Erol I. The effect of FeCl3 on the optical constants and optical band gap of MBZMA-CO-MMA polymer thin films. Physica B. 2007;391: 136-140.

Sutapa IW, Abdul WW, Taba P, Nafie NL. Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles. IOP Conf. Series: Journal of Physics: Conf. Series. 2018;(979):012021

DOI :10.1088/1742-6596/979/1/012021.

Ashraf R, Saira R, Zohra NK, Shahzad N. Structural and magnetic properties of iron doped ZnO nanoparticles. Materials Today: Proceedings. 2015;2:5384–5389. DOI:10.1016/j.matpr.2015.11.055.

Mbonu JI. Determination of Ni(II) crystal structure by powder x-ray diffraction. Scientia Africana. 2015;14(1):158-164.

Falak S. Crystal structure determination I. Pakistan Institute of Engineering and Applied Sciences. 2010;1–41.

Saleem AH, Rashid OK, Sura NT. Structural and optical properties of tin oxide and indium doped SnO2 thin films deposited by thermal evaporation technique. Journal of Advances in Physics. 2016;12(3):4394-4399.

Khalid NR, Hammad A, Tahir MB, Rafique M, Iqbal T, Nabi G, Hussain MK. Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceramics International. 2019;(45):21430–21435.


Layth MA. Study the effect of annealing on optical and electrical properties of ZnS thin film prepared by CO2 laser deposition technique. Iraqi J. Laser. 2014;(13):29-35.

Nada M. Structural and optical properties of ZnS thin films prepared by spray pyrolysis technique, department of physics, college of science, University of Baghdad, Baghdad-Iraq; 2010.

Wanjala KS, Njoroge WK, Ngaruiya JM. Optical and electrical characterization of ZnS: Sn thin films for solar cell application. Int. J. Energy Enginneering. 2016;6(1).

Hiroshi K, Ayumu I, Katja O, Ilpo N. Refractive index measurement of nanoparticles by immersion refractometry based on a surface plasmon resonance sensor. Chemical Physics Letters. 2016;(654):72-75.


Edwin VDP, Frank AWC, Auguste S, Rienk N, Ton GVL. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. ACS Nano Letter. 2014;14(11): 6195–6201.


Oluyamo SS, Agunbiade DB. Spin coated tin oxide thin film for optical and optoelectronic materials application. International Journal of innovated Research and Advanced studies (IJIRAS). 2016;3(8):394-398.

Kröhnke C. Encyclopedia of materials: Science and technology. Elseviers publishers; 2001.

Noor H, Majeed AH, Ahmed H. Structural, optical and dielectric properties of (PS- In2 O3 / ZnCoFe2 O4) nanocomposites. Egyptian Journal of Chemistry. Egypt. J. Chem. V. 2019;62(2):577–592.

DOI: 10.21608/ejchem..14646.1887.