A Theoretical Study on the Information Theoretic Inequalities and Fisher-Shannon Product of a Free Particle

Sudin Singh *

Department of Physics, Bolpur College, Bolpur, Birbhum, W.B., India.

*Author to whom correspondence should be addressed.


Abstract

In this article, the plane wave solution for a free particle in three dimensions is considered and the wave function is normalized in an arbitrarily large but finite cube. The momentum space wave function is obtained by taking the Fourier transform of the coordinate space wave function. The probability densities are employed to compute the numerical values of the information theoretic quantities such as Shannon information entropy (S), Fisher information entropy (I), Shannon power (J) and the Fisher–Shannon product (P) both in coordinate and momentum spaces for different values of the length (L) of the cubical box. Numerical values so found satisfy the Beckner, Bialynicki-Birula and Myceilski (BBM) inequality relation; Stam-Cramer-Rao inequalities (better known as the Fisher based uncertainty relation) and Fisher-Shannon product relation. This establishes the validity of the information theoretic inequalities in respect of the motion of a free particle.

Keywords: Beckner, Bialynicki-Birula and Myceilski (BBM) inequality, Fisher information entropy, Fisher-Shannon product, Shannon information entropy, uncertainty relations


How to Cite

Singh, S. (2022). A Theoretical Study on the Information Theoretic Inequalities and Fisher-Shannon Product of a Free Particle. Asian Journal of Research and Reviews in Physics, 6(3), 25–32. https://doi.org/10.9734/ajr2p/2022/v6i3119

Downloads

Download data is not yet available.

References

Shannon CE. A Mathematical Theory of Communication. The Bell Syst. Tech. J. 1948;27(3):379–656.

DOI: 10.1002/j.1538-7305.1948.tb01338.x

Heisenberg W. The actual content of quantum theoretical kinematics and mechanics. Z. Phy. 1927;43(3-4):172-198.

Kennard EH. Zur Quantenmechanik Einfacher Bewegungstypen. Z. Phys. 1927;44(4-5):26-352.

Available:https://doi.org/10.1007/BF01391200

Hilgevoord J, Uffink JBM. More certainty about the uncertainty principle. Eur. J. Phys. 1985;6(3):165-170.

Available:https://doi.org/10.1088/0143-0807/6/3/007

Majernik V, Richterek L. Entropic uncertainty relations. Eur. J. Phys. 1999; 18(2):79-89.

DOI:10.1088/0143-0807/18/2/005

Uffink JBM. Measures of uncertainty and the uncertainty principle (Reference No.: 23012820), PhD Thesis, University of Utrecht, Utrecht, Netherlands; INIS 23(4); 1990.

Hall Michel JW. Universal geometric approach to uncertainty, entropy and Information. Phys. Rev. A. 1999;59(4): 2602–2615.

Available:https://doi.org/10.1103/PhysRevA.59.2602.

Fisher RA. Theory of Statistical Estimation. In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press. 1925;22(5): 700-725.

Available:https://doi.org/10.1017/S0305004100009580

Kostal L, Lansky P, Pokora O. Measures of statistical dispersion based on Shannon and Fisher information concepts. Inf. Sci. 2013;235(6):214-223.

DOI: 10.1016/j.ins.2013.02.023

Mukherjee N, Roy AK. Information-entropic measures for non-zero l states of confined hydrogen-like Ions. Eur. Phys. J. D. 2018; 72(6):118-130.

DOI: 10.1140/epjd/e2018-90104-1

Gadea O, Blado G. Entropic Uncertainty Relations, Entanglement and Quantum Gravity Effects via the Generalized Uncertainty Principle. Asian Journal of Research and Reviews in Physics. 2018; 1(4):1-12.

DOI: 10.9734/AJR2P/2018/v1i424634

Beckner W. Inequalities in Fourier analysis. Ann. Math. 1975;102(1):159-182.

Available:https://doi.org/10.2307/1970980

Bialynick-Birula I, Mycielski J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975; 44:129-132.

Pooja A, Sharma A, Gupta R, Kumar A. Quantum information entropy of modified Hylleraas plus exponential Rosen Morse potential and squeezed states. Int. J. Quant. Chem. 2017;e25368:1-10.

Available:https://doi.org/10.1002/qua.25368

Pooja A, Kumar K, Gupta G, Kumar R, Kumar A. Quantum information entropy of Eckart potential. Int. J. Quant. Chem. 2016;e25197:1-7.

Available:https://doi.org/10.1002/qua.25197

Gonzalez-Ferez R, Dehesa JS. Shannon Entropy as an Indicator of Atomic Avoided Crossings in Strong Parallel Magnetic and Electric Fields. Phys. Rev. Lett. 2003; 91(11):113001-4.

DOI: 10.1103/PhysRevLett.91.113001

Amadi PO, Ikot AN, Ngiangia AT, Okorie US, Rampho GJ, Abdullahi HY. Shannon entropy and Fisher information for screened Kratzer potential. Int. J. Quant. Chem. 2020;e26246:1-12.

Available:https://doi.org/10.1002/qua.26246

Nagy A. Fisher information in density functional theory. J. Chem. Phys. 2003; 119(18):9401-9405.

DOI: 10.1063/1.1615765

Onate CA, Onyeaju MC, Ikot AN, Idiodi JOA, Ojonuba JO. Eigen Solutions, Shannon Entropy and Fisher Information under the Eckart Manning Rosen Potential Model. J. Korean Phys. Soc. 2017;70(4): 339-347.

DOI: 10.3938/jkps.70.339

Alipour M, Mohajeri A. Onicescu information energy in terms of Shannon Entropy and Fisher information densities. Mol. Phys. 2012;10(7):403-405.

DOI: 10.1080/00268976.2011.649795

Frieden BR. Science from Fisher information. Cambridge University Press, Cambridge; 2004.

Available:https://doi.org/10.1017/CBO9780511616907

Stam A. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon, Inform. Control. 1959;2(2):101-112.

DOI: 10.1016/S0019-9958(59)90348-1

Dehesa JS, Gonzalez-Ferez SR, Sanchez-Moreno P. The Fisher-information-based uncertainty relation, Cramer–Rao inequality and kinetic energy for the D-dimensional central problem. J. Phys. A. Math. Theor. 2007;40(8):1845-1856.

DOI:10.1088/1751-8113/40/8/011

Romera E, Sanchez-Moreno P, Dehesa JS. Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials. J. Math. Phys. 2006;47(10):103504-11.

DOI: 10.1063/1.2357998

Dembo A, Cover TM, Thomas J. Information theoretic inequalities. IEEE Trans. Inf. Theory. 1991;37(6):1501-1518.

DOI: 10.1109/18.104312

Romera E, Sanchez-Moreno P, Dehesa JS. The Fisher information of single-Particle systems with a central potential. Chem. Phys. Lett. 2005;414(4-6):468- 472.

Available:https://doi.org/10.1016/j.cplett.2005.08.032

Yanez RJ, Van Assche W, Dehesa JS. Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A. 1994;50(4):3065-3079.

Available:https://doi.org/10.1103/PhysRevA.50.3065

Arfken G, Weber H. Mathematical Methods for Physicists. 6th ed., Elsevier AP, Boston; 2005.