Open Access Original Research Article

A Mathematical Relationship between Hydrogenic Periodic Property and Nuclear Properties in Furtherance of Bohr’s Theory

Ikechukwu I. Udema

Asian Journal of Research and Reviews in Physics, Page 1-6
DOI: 10.9734/ajr2p/2022/v6i3117

Background: Atomic physics and nuclear matter physics are often exclusively studied. However, atomic properties are a direct function of nuclear properties. Establishing a mathematical relationship between nuclear and atomic properties could serve the interest of nuclear and atomic engineers. Nuclear - and atomic-based instrumentation engineering and nuclear medicine (and perhaps atomic medicine) applications could be the benefits.

Objectives: The research is undertaken to 1) link nuclear property, the mass-radius of the nucleon, and ionization energy of hydrogen via the derivation of appropriate equation and 2) determine the mass-radii of the nucleons and some leptons.

Methods: Theoretical and computational methods.

Results and Discussion: As applicable to the previous results in the literature, the larger the mass of the elementary particles, the longer the radii. For the particles investigated, the order of the radius is muon (m-)<proton (p+)< neutron (n)< tauon (t-) corresponding to increasing mass, m-<p+< n<t-. The values of the mass radii were respectively » 0.1240, 1.1012, 1.1027, and 2.0855 fm.

Conclusion: Nuclear properties such as the radius of any nucleon (ΓN) can be mathematically linked to atomic properties such as the ionization energy of hydrogen via equation which shows that ΓN is inversely proportional to the ionization energy of hydrogen and directly proportional to the rest-mass of the particle.

Open Access Original Research Article

Performance Analysis of Three-Phase Shunt Active Power Filter for Harmonic Mitigation

Samson Dauda Yusuf, Abdulmumini Zubairu Loko, Jibrin Abdullahi

Asian Journal of Research and Reviews in Physics, Page 7-24
DOI: 10.9734/ajr2p/2022/v6i3118

Aims: To carried out performance analysis of a shunt active power filter (SAPF) for harmonics mitigation.

Study Design: Experimental design through simulation studies using P-Q Theory and proportional integral controller.

Place and Duration of Study: Department of Physics, Nasarawa State University Keffi, main campus, Nigeria, between October 2020 and September 2021.

Methodology: Primary and secondary data were obtained using AVO Digital Multimeter and manufacturers’ datasheets from Schneider electric website to capture required system parameters, SAPF was designed using a Voltage Source Inverter model to represent the Three-Phase source, and P-Q Theory with PI Control was used for reference current extraction. The SAPF was modeled, designed and simulated using MATLAB-Simulink and analyzed under different nonlinear load conditions and harmonic spectrum to achieve low Total Harmonic Distortion (THD).

Results: The THD in the unbalanced system voltages before the application of SAPF was found to be 12.6%, 11.4% and 11.2%, while after the application of SAPF was 2.2%, 2.5% and 2.5% for phase voltages a, b and c respectively. The grid currents indicated THD of 27.2%, 30.9% and 31% before application of SAPF and 2.2%, 2.2% and 2.1% after application.

Conclusion: The use of non-linear loads; has adverse effects on the quality of electric power as well as phase voltage and frequency waveforms. The use of SAPF is of vital importance in improving electric power quality for reliable power supply and quality service delivery.

Open Access Original Research Article

A Theoretical Study on the Information Theoretic Inequalities and Fisher-Shannon Product of a Free Particle

Sudin Singh

Asian Journal of Research and Reviews in Physics, Page 25-32
DOI: 10.9734/ajr2p/2022/v6i3119

In this article, the plane wave solution for a free particle in three dimensions is considered and the wave function is normalized in an arbitrarily large but finite cube. The momentum space wave function is obtained by taking the Fourier transform of the coordinate space wave function. The probability densities are employed to compute the numerical values of the information theoretic quantities such as Shannon information entropy (S), Fisher information entropy (I), Shannon power (J) and the Fisher–Shannon product (P) both in coordinate and momentum spaces for different values of the length (L) of the cubical box. Numerical values so found satisfy the Beckner, Bialynicki-Birula and Myceilski (BBM) inequality relation; Stam-Cramer-Rao inequalities (better known as the Fisher based uncertainty relation) and Fisher-Shannon product relation. This establishes the validity of the information theoretic inequalities in respect of the motion of a free particle.

Open Access Original Research Article

Universe before Big Bang

Deep Bhattacharjee

Asian Journal of Research and Reviews in Physics, Page 33-47
DOI: 10.9734/ajr2p/2022/v6i3120

The ghost condensation of the early universe in a pre-big bang phase has been presented in this paper through duration of a non-singular bounce. The undergoing universe contracts and passes smoothly in an expanding universe via a post-big bang phase. Initially developing and then taming any ghost like instabilities, the Null Energy Condition (NEC) is explicitly violated through the curvature mechanism of an adiabatic perturbed metric. The vacuum state of the ongoing phase is stabilized via a Lagrangian that in essence stabilizes the vacuum state under the higher order derivatives. The violation of the NEC regards a catastrophic vacuum instability, which re-emerges with a correction valid at small energies and momenta, below the UV-cut-off scale that, could potentially be problematic if one tries to construct a UV-completed theory of this Ekpyrotic model. The scale-invariant curvature perturbation, that arises and is sourced out of the scale-invariant entropy perturbations sourced by 2-Ekpyrotic scalar fields, that, in contrast, becomes constant on the super-horizon limits, due to the non-singular nature of the background geometry. Apart, from the ghost condensates, this theory addresses the new Ekpyrotic theory which in order becomes a distinguishable alternative to inflation theory for the birth of the universe. As per the recent WMAP data, the Ekpyrotic model has a spectral red tilt that shows the bounced scalar potential falling through a negative phase shift during the matter-fluid fluctuations in the hot big bang phase.

Open Access Original Research Article

Tropospheric Influence on Ultra-High Frequency (UHF) Radio Waves

Joel Iloke, Ukoette Jeremiah Ekah, Igwe Ewona

Asian Journal of Research and Reviews in Physics, Page 48-57
DOI: 10.9734/ajr2p/2022/v6i3121

This research investigates the effects of temperature and relative humidity on UHF signals. A spectrum analyzer was used in measuring UHF signals while a digital thermometer and hygrometer was used in measuring temperature and relative humidity, respectively. From results obtained, relative humidity had no significant effect on measured path loss while a positive correlation coefficient was obtained between temperature and measured path loss. This implies that an increase in temperature will lead to a decrease in received signal strength of UHF signals. Furthermore, a path loss propagation model for Calabar (PL = 37.920 + 2.796T + 0.290R + ) was obtained using multiple regression analysis and we believe that the obtained result will be useful to radio engineers for UHF signal propagation in the study terrain.